Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 109(4): 856-872, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34808024

RESUMO

Jasmonate signaling for adaptative or developmental responses generally relies on an increased synthesis of the bioactive hormone jasmonoyl-isoleucine (JA-Ile), triggered by environmental or internal cues. JA-Ile is embedded in a complex metabolic network whose upstream and downstream components strongly contribute to hormone homeostasis and activity. We previously showed that JAO2, an isoform of four Arabidopsis JASMONIC ACID OXIDASES, diverts the precursor jasmonic acid (JA) to its hydroxylated form HO-JA to attenuate JA-Ile formation and signaling. Consequently, JAO2-deficient lines have elevated defenses and display improved tolerance to biotic stress. Here we further explored the organization and regulatory functions of the JAO pathway. Suppression of JAO2 enhances the basal expression of nearly 400 JA-regulated genes in unstimulated leaves, many of which being related to biotic and abiotic stress responses. Consistently, non-targeted metabolomic analysis revealed the constitutive accumulation of several classes of defensive compounds in jao2-1 mutant, including indole glucosinolates and breakdown products. The most differential compounds were agmatine phenolamides, but their genetic suppression did not alleviate the strong resistance of jao2-1 to Botrytis infection. Furthermore, jao2 alleles and a triple jao mutant exhibit elevated survival capacity upon severe drought stress. This latter phenotype occurs without recruiting stronger abscisic acid responses, but relies on enhanced JA-Ile signaling directing a distinct survival pathway with MYB47 transcription factor as a candidate mediator. Our findings reveal the selected spectrum of JA responses controlled by the JAO2 regulatory node and highlight the potential of modulating basal JA turnover to pre-activate mild transcriptional programs for multiple stress resilience.


Assuntos
Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Dioxigenases/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Dioxigenases/genética , Regulação da Expressão Gênica de Plantas , Homeostase , Isoleucina/análogos & derivados , Redes e Vias Metabólicas , Oxirredutases/genética , Oxirredutases/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Estresse Fisiológico , Transcriptoma
2.
Plant Cell Environ ; 43(6): 1558-1570, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32162701

RESUMO

Jasmonate synthesis and signalling are essential for plant defense upregulation upon herbivore or microbial attacks. Stress-induced accumulation of jasmonoyl-isoleucine (JA-Ile), the bioactive hormonal form triggering transcriptional changes, is dynamic and transient because of the existence of potent removal mechanisms. Two JA-Ile turnover pathways operate in Arabidopsis, consisting in cytochrome P450 (CYP94)-mediated oxidation and deconjugation by the amidohydrolases IAR3/ILL6. Understanding their impacts was previously blurred by gene redundancy and compensation mechanisms. Here we address the consequences of blocking these pathways on jasmonate homeostasis and defenses in double-2ah, triple-3cyp mutants, and a quintuple-5ko line deficient in all known JA-Ile-degrading activities. These lines reacted differently to either mechanical wounding/insect attack or fungal infection. Both pathways contributed additively to JA-Ile removal upon wounding, but their impairement had opposite impacts on insect larvae feeding. By contrast, only the ah pathway was essential for JA-Ile turnover upon infection by Botrytis, yet only 3cyp was more fungus-resistant. Despite building-up extreme JA-Ile levels, 5ko displayed near-wild-type resistance in both bioassays. Molecular analysis indicated that restrained JA-Ile catabolism resulted in enhanced defense/resistance only when genes encoding negative regulators were not simultaneously overstimulated. This occurred in discrete stress- and pathway-specific combinations, providing a framework for future defense-enhancing strategies.


Assuntos
Arabidopsis/imunologia , Arabidopsis/fisiologia , Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Transdução de Sinais , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/microbiologia , Botrytis/fisiologia , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Homeostase , Isoleucina/metabolismo , Mutação/genética , Oxilipinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Estresse Fisiológico/genética
3.
Plant Cell Physiol ; 60(12): 2621-2628, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504918

RESUMO

Regulation of defense and developmental responses by jasmonates (JAs) has been intensively investigated at genetic and transcriptional levels. Plasticity in the jasmonic acid (JA) metabolic pathway as a means to control signal output has received less attention. Although the amplitude of JA responses generally follows the accumulation dynamics of the active hormone jasmonoyl-isoleucine (JA-Ile), emerging evidence has identified cases where this relationship is distorted and that we discuss in this review. JA-Ile is turned over in Arabidopsis by two inducible, intertwined catabolic pathways; one is oxidative and mediated by cytochrome P450 enzymes of the subfamily 94 (CYP94), and the other proceeds via deconjugation by amidohydrolases. Their genetic inactivation has profound effects on JAs homeostasis, including strong JA-Ile overaccumulation, but this correlates with enhanced defense and tolerance to microbial or insect attacks only in the absence of overinduction of negative signaling regulators. By contrast, the impairment of JA oxidation in the jasmonic acid oxidase 2 (jao2) mutant turns on constitutive defense responses without elevating JA-Ile levels in naive leaves and enhances resistance to subsequent biotic stress. This latter and other recent cases of JA signaling are associated with JA-Ile catabolites accumulation rather than more abundant hormone, reflecting increased metabolic flux through the pathway. Therefore, manipulating upstream and downstream JA-Ile homeostatic steps reveals distinct metabolic nodes controlling defense signaling output.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Sistema Enzimático do Citocromo P-450/metabolismo , Isoleucina/metabolismo , Oxirredução , Transdução de Sinais/fisiologia
4.
Rice (N Y) ; 12(1): 45, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31240493

RESUMO

BACKGROUND: Jasmonate (JA) signaling and functions have been established in rice development and response to a range of biotic or abiotic stress conditions. However, information on the molecular actors and mechanisms underlying turnover of the bioactive jasmonoyl-isoleucine (JA-Ile) is very limited in this plant species. RESULTS: Here we explored two gene families in rice in which some members were described previously in Arabidopsis to encode enzymes metabolizing JA-Ile hormone, namely cytochrome P450 of the CYP94 subfamily (CYP94, 20 members) and amidohydrolases (AH, 9 members). The CYP94D subclade, of unknown function, was most represented in the rice genome with about 10 genes. We used phylogeny and gene expression analysis to narrow the study to candidate members that could mediate JA-Ile catabolism upon leaf wounding used as mimic of insect chewing or seedling exposure to salt, two stresses triggering jasmonate metabolism and signaling. Both treatments induced specific transcriptional changes, along with accumulation of JA-Ile and a complex array of oxidized jasmonate catabolites, with some of these responses being abolished in the JASMONATE RESISTANT 1 (jar1) mutant. However, upon response to salt, a lower dependence on JAR1 was evidenced. Dynamics of CYP94B5, CYP94C2, CYP94C4 and AH7 transcripts matched best the accumulation of JA-Ile catabolites. To gain direct insight into JA-Ile metabolizing activities, recombinant expression of some selected genes was undertaken in yeast and bacteria. CYP94B5 was demonstrated to catalyze C12-hydroxylation of JA-Ile, whereas similarly to its Arabidopsis bi-functional homolog IAR3, AH8 performed cleavage of JA-Ile and auxin-alanine conjugates. CONCLUSIONS: Our data shed light on two rice gene families encoding enzymes related to hormone homeostasis. Expression data along with JA profiling and functional analysis identifies likely actors of JA-Ile catabolism in rice seedlings. This knowledge will now enable to better understand the metabolic fate of JA-Ile and engineer optimized JA signaling under stress conditions.

5.
Mol Plant ; 10(9): 1159-1173, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28760569

RESUMO

Jasmonates (JAs) orchestrate immune responses upon wound/herbivore injury or infection by necrotrophic pathogens. Elucidation of catabolic routes has revealed new complexity in jasmonate metabolism. Two integrated pathways attenuate signaling by turning over the active hormone jasmonoyl-isoleucine (JA-Ile) through ω-oxidation or deconjugation, and define an indirect route forming the derivative 12OH-JA. Here, we provide evidence for a second 12OH-JA formation pathway by direct jasmonic acid (JA) oxidation. Three jasmonic acid oxidases (JAOs) of the 2-oxoglutarate dioxygenase family catalyze specific oxidation of JA to 12OH-JA, and their genes are induced by wounding or infection by the fungus Botrytis cinerea. JAO2 exhibits the highest basal expression, and its deficiency in jao2 mutants strongly enhanced antifungal resistance. The resistance phenotype resulted from constitutive expression of antimicrobial markers rather than from their higher induction in infected jao2 plants and could be reversed by ectopic expression of any of the three JAOs in jao2. Elevated defense in jao2 was dependent on the activity of JASMONATE RESPONSE 1 (JAR1) and CORONATINE-INSENSITIVE 1 (COI1) but was not correlated with enhanced JA-Ile accumulation. Instead, jao2 mutant lines displayed altered accumulation of several JA species in healthy and challenged plants, suggesting elevated metabolic flux through JA-Ile. Collectively, these data identify the missing enzymes hydroxylating JA and uncover an important metabolic diversion mechanism for repressing basal JA defense responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Botrytis/fisiologia , Ciclopentanos/metabolismo , Dioxigenases/metabolismo , Resistência à Doença , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Antifúngicos/farmacologia , Arabidopsis/efeitos dos fármacos , Ciclopentanos/química , Resistência à Doença/efeitos dos fármacos , Técnicas de Inativação de Genes , Hidroxilação , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Oxilipinas/química , Doenças das Plantas/imunologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...